Periodic change of viscosity and density in an oscillating chemical reaction.

نویسندگان

  • Minoru Yoshimoto
  • Hiroyuki Shirahama
  • Shigeru Kurosawa
  • Masayoshi Naito
چکیده

It was found that the periodic change of the solution viscosity and density was generated in the Belousov-Zhabotinsky (BZ) reaction. This rhythmic phenomenon was observed in both the iron catalyst [[Fe(Phen)(3)](2+)-[Fe(Phen)(3)](3+)] and the cerium catalyst [Ce(III)-Ce(IV)] system, where the solution viscosity and density were synchronized with the redox potential in the in-phase mode. However, the time delay existed between the redox potential and the solution viscosity and density. The behavior of the BZ reaction was also monitored in the presence of the nonionic surfactant. This experiment revealed that, beyond the critical micelle concentration, the phase between the redox potential and the solution viscosity and density was synchronized into the antiphase mode. We suggested that the variation of the catalyst drove the oscillation of the solution viscosity and density in the BZ reaction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tutorial Review: Simulation of Oscillating Chemical Reactions Using Microsoft Excel Macros

Oscillating reactions are one of the most interesting topics in chemistry and analytical chemistry. Fluctuations in concentrations of one the reacting species (usually a reaction intermediate) create an oscillating chemical reaction. In oscillating systems, the reaction is far from thermodynamic equilibrium. In these systems, at least one autocatalytic step is required. Developing an instinctiv...

متن کامل

Measuring the Density and Viscosity of Carbonated Aqueous 35 wt% Methyldiethanolamine Solution

The density and viscosity of carbonated aqueous 35wt% methyldiethanolamine solution were experimentally measured accompanied with the solubility of CO2 at temperatures from (303.15 to 363.15) K and pressures up to 0.8 MPa using the new setup developed in our laboratory.It was observed that both density and viscosity of mixtures decrease by increasing temperature and incr...

متن کامل

Physico-chemical evaluation of a biocompatible microemulsion system containing IPM/Tween80/Isobutanol

A biocompatible microemulsion system comprising of isopropyl myristate (IPM) as oil, tween 80 as a non-ionic surfactant and isobuthanol as co-surfactant was studied experimentally at 298.15 K. The pseudo-ternary phase diagram for the microemulsion system has been delineated at different surfactant to co-surfactant mass ratio of 1:1, 2.4:1 and 4:1. Some physico-chemical properties such as densit...

متن کامل

Investigation of Effective Parameters on Phase Inversion Hold-up in Continuous Mixer-settler

In this paper, we studied effect of different parameters including density, viscosity, interfacial tension and solute transfer concentration on phase inversion hold-up. The results showed that change in phase density ratio had no effect on phase inversion hold-up. It also disclosed that the phase viscosity ratio was the most effective parameter affecting phase inversion hold-up and each phase h...

متن کامل

Using Artificial Neural Network for Estimation of Density and Viscosities of Biodiesel–Diesel Blends

In recent years, biodiesel has been considered as a good alternative of diesel fuels. Density and viscosity are two important properties of these fuels. In this study, density and kinematic viscosity of biodiesel-diesel blends were estimated by using artificial neural network (ANN). A three-layer feed forward neural network with Levenberg-Marquard (LM) algorithm was used for learning empirical ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 120 15  شماره 

صفحات  -

تاریخ انتشار 2004